Examen final - Deuxième session

Mardi 13 juin 2017

Durée: 2 heures

Barème indicatif:

Exercice 1: 10 points Exercice 2: 10 points

Exercice 1 - On représente les revenus annuels (en milliers d'euros) au sein d'une entreprise.

Revenus annuels (en	Nombre de salariés
milliers d'euros)	
[0, 10[120
[10, 20[20
[20, 30[40
[30; 40[50
[40, 50[80

- 1. Calculer les fréquences cumulées croissantes et décroissantes.
- 2. En déduire le pourcentage de salariés de l'entreprise en question dont le revenu annuel est supérieur à 30 000 euros; puis inférieur à 40 000 euros.
- 3. Calculer le revenu annuel moyen.
- 4. Calculer Q_1 et Q_2 de la série.
- 5. On donne $Q_3 = 37$. Représenter la boite à moustaches.
- 6. Calculer la variance puis l'écart-type.

Exercice 2 - Dans cet exercice, les questions sont indépendantes.

- 1. Posons $E = \{x \in \mathbb{R} \text{ tq } |x-2| < 4\}$. Déterminer, s'ils existent, le maximum, le minimum, la borne supérieure et la borne inférieure de E dans \mathbb{R} .
- 2. Soit les deux suites suivantes:
 - (a) Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de premier terme $u_0=2$ et de raison r=3. Donner u_n en fonction de n et calculer u_5 .
 - (b) Soit $(v_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $v_0=1$ et de raison q=2. Donner v_n en fonction de n et calculer v_7 .
- 3. Déterminer les limites de $\frac{5x^2-4x-1}{x^2-3x+2}$ quand x tend vers $-\infty$ et $+\infty$
- 4. Soit la fonction définie sur \mathbb{R}

$$f(x) = e^x(x-1)$$

- (a) Calculer les limites de f(x) quand x tend vers $+\infty$ et $-\infty$.
- (b) Calculer la dérivée f' de la fonction f. En déduire le tableau de variations.
- (c) Donner suivant la valeur de m le nombre de solutions de l'équation f(x) = m dans \mathbb{R}