

CORRIGE LEARNING BY DOING

L1Eco TQ Octobre 2014

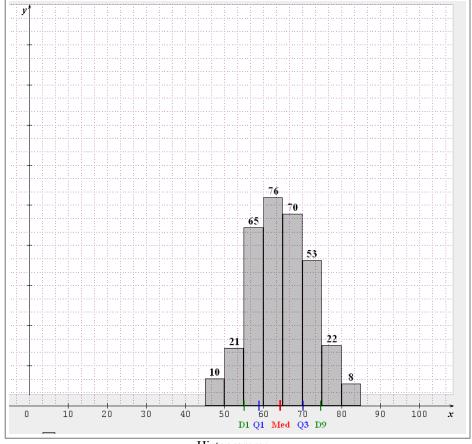
1 EXERCICE-1

1.

On donne ici le tableau statistique qui permettra de répondre aux différentes questions de l'exercice.

a _i	b _i	xi	n _i	n _i cc	n _i x _i	n _i x _i ²	
45	50	47,5	10	10	475	22562,5	
50	55	52,5	21	31	1102,5	57881,25	
55	60	57,5	65	96	3737,5	214906,25	
60	65	62,5	76	172	4750	296875	
65	70	67,5	70	242	4725	318937,5	
70	75	72,5	53	295	3842,5	278581,25	
75	80	77,5	22	317	1705	132137,5	
80	85	82,5	8	325	660	54450	
			325		20997,5	1376331,25	

Il s'agit d'un caractère quantitatif continu dont les classes sont d'égales amplitudes, il n'y a donc pas à corriger les effectifs.



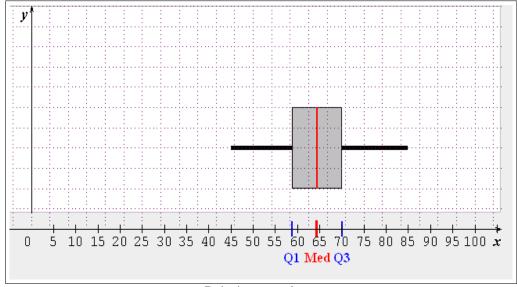
Histogramme

2. La classe modale est la classe de plus grande densité, donc dans le cas d'amplitudes égales, de plus grand effectif, c'est donc la classe [60; 65]. Il reste à calculer le mode à l'intérieur de la classe modale en considérant les classes encadrant la classe modale, ce qui donne avec les notations du cours : $\begin{cases} x_1 = 60 \\ x_2 = 65 \end{cases}, \begin{cases} h = 76 \\ h_1 = 65 \text{ et } h_2 = 70 \end{cases}$

$$\begin{cases} k_1 = h - h_1 = 11 \\ k_2 = h - h_2 = 6 \end{cases}$$
 et pour conclure :

$$\begin{cases} k_1 = h - h_1 = 11 \\ k_2 = h - h_2 = 6 \end{cases}$$
 et pour conclure :
$$M_o = \frac{k_2 x_1 + k_1 x_2}{k_2 + k_1} = \frac{6*60 + 11*65}{17} \simeq 63.24 \; ; \text{comme prévu, le mode est plus grand que } 62.5 \; , \text{car il est attiré par la classe de droite}$$

- 3. Le premier quartile de cette série est localisé grâce aux effectifs cumulés croissants, il y a au moins 25% de la série avant Q_1 , donc $\frac{325}{4} = 81.25$ observations, Q_1 est donc dans la classe [55; 60]; il reste à effectuer une interpolation linéaire, par exemple en écrivant l'alignement des trois points : A(55,31), B(60,96) et $M(Q_1;81.25)$, ce qui donne : $\frac{96-31}{60-55} = \frac{81.25-31}{Q_1-55}$ soit : $Q_1-55 = \frac{81.25-31}{65}*5$ et $Q_1=55+\frac{50.25}{13}=58.87$; il y a 25% des observations qui sont inférieures ou égales à 58.87.
- 4. On calcule l'écart inter-quartile : $EIQ = Q_3 Q_1 = 70.17 58.87 = 11.3$; par convention on limite la taille des moustaches à 1.5EIQ, pour éliminer les observations abérrantes. 1.5EIQ = 1.5 * 11.3 = 16.95; la valeur minimale du caractère est de 45 et la valeur maximale de 85, ce qui donne à priori pour les tailles des moustaches à gauche $Q_1-Min\left(x\right)=58.87-45=13.87\leq 16.95$ à droite $Max\left(x\right)-Q_3=85-70.17=14.83\leq 16.95$; les moustaches ne posent pas de problème, on garde comme extrémité le minimum 45 et le maximum 85.



Boîte à moustaches

5. $C_Y = \frac{Q_1 + Q_3 - 2M_e}{Q_3 - Q_1} = \frac{58.87 + 70.17 - 2*64.38}{9.3} \simeq 3.01 \times 10^{-2}$. Ce coefficient sans unité, est positif ; il

est du signe du numérateur et nous indique que $Q_1+Q_3>2M_e$ soit que $\frac{Q_1+Q_3}{2}>M_e$, donc que la médiane est à gauche du milieu de la boite à moustache : la série est légèrement asymétrique, étalée à droite.

- 6. Le tabeau statistique permet de calculer la moyenne de cette série : $\overline{x} = \frac{1}{n} \sum n_i x_i = \frac{20997.5}{325} \simeq 64.61.$ Remarque : on a $M_o \leq M_e \leq \overline{x}$, ce qui est cohérent avec un étalement à droite.
- 7. Le tableau permet de calculer $V\left(x\right)=\frac{1}{n}\sum n_{i}x_{i}^{2}-\overline{x}^{2},$ si on utilise la formule dévéloppée : $V\left(x\right)=0$ $\frac{1376331.25}{325} - \left(\frac{20997.5}{325}\right)^2 = 60.71, \text{ soit un \'ecart-type } \sigma\left(x\right) = \sqrt{60.71} = 7.79$

2 EXERCICE-2

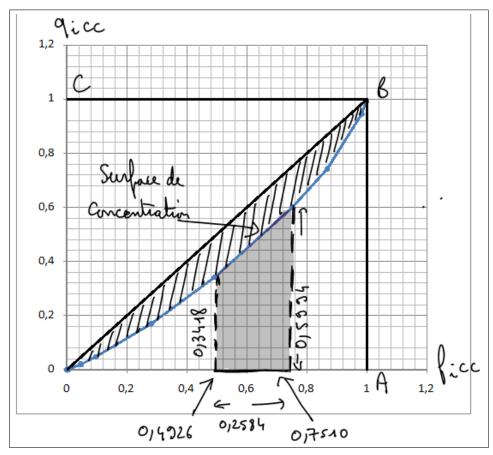
On a dressé le tableau statistique pour répondre aux différentes questions.

a _i	b _i	xi	n _i	f i	f _i cc	$\mathbf{n}_{i}\mathbf{x}_{i}$	$n_i x_i^2$	q _i	q _i cc	Sı
0	50	25	9246	0.0036	0.0036	231150	5778750	0.0007	0.0007	0.0000
50	70	60	111107	0.0431	0.0467	6666420	399985200	0.0191	0.0198	0.0004
70	80	75	129457	0.0502	0.0969	9709275	728195625	0.0278	0.0476	0.0017
80	100	90	476716	0.1849	0.2817	42904440	3861399600	0.1229	0.1705	0.0202
100	120	110	543670	0.2108	0.4926	59803700	6578407000	0.1713	0.3418	0.0540
120	150	135	666398	0.2584	0.7510	89963730	12145103550	0.2577	0.5994	0.1216
150	180	165	301428	0.1169	0.8679	49735620	8206377300	0.1425	0.7419	0.0784
180	300	240	294687	0.1143	0.9821	70724880	16973971200	0.2026	0.9445	0.0964
300	500	400	42172	0.0164	0.9985	16868800	6747520000	0.0483	0.9928	0.0158
500	800	650	3871	0.0015	1.0000	2516150	1635497500	0.0072	1.0000	0.0015
			2578752	1.0000		349124165	57282235725	1.0000		0.3900

1. On trouve donc
$$\overline{x}=\frac{1}{n}\sum n_ix_i=\frac{349124165}{2578752}\simeq 135.38$$

^{2.} Le tableau permet de calculer $V\left(x\right)=\frac{1}{n}\sum n_{i}x_{i}^{2}-\overline{x}^{2},$ si on utilise la formule dévéloppée : $V\left(x\right)=\frac{57282235725}{2578752}-\left(135.38\right)^{2}\simeq3885.42$ soit un écart-type $\sigma\left(x\right)=\sqrt{3885.42}\simeq62.33.$

^{3.} La courbe de Lorentz est tracée ci-dessous, avec en abscisse les f_icc et en ordonnée les q_icc (masses relatives cumulées croissantes). On lit par exemple dans le tableau que salariés 28.17% salariés les moins bien payés (salaire inférieur ou égal à 100), se partagent 17.05% de la masse salariale. L'indice de concentration de Gini est le rapport entre l'aire de concentration et l'aire du triangle OAB, soit $I_c = \frac{A_c}{0.5} = 2A_c$, puisque le triangle OAB a une aire de 0.5.On a calculé les aires (S_i) des trapèzes (le premier est en fait un triangle) et on a effectué la somme, pour obtenir l'aire du domaine situé sous la courbe de Lorentz, soit 0.39; il reste à calculer l'aire de concentration; $A_c = 0.5 - 0.39 = 0.11$ d'où un indice de Gini de : $I_c = 2 * 0.11 = 0.22$, soit de 22%. La concentrationest faible car cet indice est plus proche de 0 que de 1.



4. Le tableau statistique et notamment les masses relatives cumulées croissantes nous montrent que la médiale est dans l'intervalle [120; 150]; il reste à effectuer une interpolation linéaire, c'est à dire à écrire l'alignement des trois points : A (120; 0.3418), B (150; 0.5994) et M (M_l ; 0.50), ce qui donne : $\frac{0.5994-0.3418}{150-120} = \frac{0.50-0.3418}{M_l-120}$ soit $M_l = 120 + \frac{0.50-0.3418}{0.5994-0.3418} *30 \simeq 138.42$. Les agents de l'état gagnant moins de 138.42 KF se partageaient 50% de la masse salariale.