EXAMEN D'ANALYSE 2

Les calculatrices sont interdites, et les téléphones portables doivent être éteints.

112

Exercice 1 - Dans cet exercice, les questions sont indépendantes.

1. Déterminer si la suite (u_n) définie par $u_n = \sqrt{n^2 + 5n + 18} - n$ converge, et si oui

2. Déterminer si la série $\sum \frac{(-3)^n}{n^3}$ est convergente ou divergente.

/1.5 3. En intégrant par parties, calculer $\int_0^1 xe^{3x}dx$.

4. En utilisant la formule de substitution, calculer les intégrales suivantes :

/15 (a) $\int_0^{\sqrt{\pi}} x \sin(x^2) dx$.

/2 (b) $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$, en posant $x = \cos u$.

5. Etudier si les intégrales généralisées suivantes convergent ou non (sans les calculer) :

$$/2 \cdot 0.5 + 1 + 0.5$$
 (a) $\int_0^1 \frac{dx}{x^2}$ (b) $\int_1^{+\infty} x^{-2x} dx$ (c) $\int_1^{+\infty} \frac{dx}{x}$

(a)
$$\int_0^1 \frac{dx}{x^2}$$

(b)
$$\int_{1}^{+\infty} x^{-2x} dx$$

$$(c) \int_{1}^{+\infty} \frac{dx}{x}$$

6. Calculer la matrice jacobienne $\left[\frac{\partial f_j}{\partial x_i}\right]_{i,j}$ de la fonction suivante (en précisant son ensemble de définition) :

$$f(x_1, x_2, x_3) = \left(x_2 \cos(x_1 x_3), e^{x_1} \ln(x_2) \sqrt{x_3}\right).$$

Exercice 2 - Dans cet exercice on considère la fonction f définie sur \mathbb{R}^2 par

$$f(x,y) = e^{xy - y^2}.$$

1. Calculer les dérivées partielles d'ordre 1 de f, c'est-à-dire $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$. En déduire le gradient de f.

0.5 2. Démontrer que le gradient ne s'annule qu'en un seul point, qu'on notera M.

3. Calculer les dérivées partielles d'ordre 2 de f, c'est-à-dire $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$. Vérifier que $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

4. Notons g la fonction définie sur \mathbb{R} par g(y)=f(0,y). Déterminer les extrema de g. Quelle pourrait être la nature du point critique M pour f?

5. Considérons la fonction h définie sur $\mathbb R$ par h(y)=f(2y,y). Déterminer les extrema de h. Quelle pourrait être la nature du point critique M pour f?

6. Quelle est finalement la nature du point critique M pour f?